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Abstract. Using methods from polaron theory, we re-derive the elastic interaction between 
two-level systems (TLS) in glasses in a non-perturbative manner. We then calculate the 
relaxation rate of the interacting dressed n s  perturbatively. Although this calculation 
necessitates some approximations, it leads to the statement that for strong TLs-phonon 
interaction the TLS relaxation rate 1/T, is, at least for asymmetric TU, considerably different 
from the prediction of the usual (weak-coupling) expression. The impact of this result on 
theory and experiment is discussed. 

There are two explicit derivations [1, 21 of the interaction, induced by the exchange of 
virtual phonons, between the now well known two-level systems (TLS) in glasses, which 
were postulated in 1972 [3,4]. Both of them are perturbative. In the first [l], an effective 
second-order Hamiltonian of the interaction is constructed. In the second approach [2] ,  
the linear coupling of the phonon to the diagonal TLS matrix elements is replaced 
with the strain field of a classical dipole, but the remainder o f the  Hamiltonian is kept 
unchanged (e.g. the phonon coupling to the off-diagonal matrix elements). The only 
problem with these approximations is that the interaction derived turns out to be strong 
[1], which might invalidate its derivation. Therefore it is clearly desirable to obtain the 
~~s in t e rac t ion  in a non-perturbative way. The present work is afirst step in thisdirection. 

Furthermore, there is a series of papers [ 5 , 6 ]  that deal with the influence of strain 
interactions or local strain fields, which are allowed to be strong, on the density of states 
of tunnelling units (two- to six-level systems) in glasses. Consequences for the low 
temperature properties of glasses such as heat capacity and thermal conductivity are 
investigated. On the other hand, these articles hardly address [5] the question of the 
microscopic (quantum mechanical) origin of these interactions, which is one of our 
objectives. The strain fields are introduced phenomenologically and treated semi-classi- 
cally. Certain many-body effects, such as the renormalisation of the deformation poten- 
tials, as well as the TLS relaxation times, which will arise naturally from our calculation, 
are absent from that approach. 

Before exhibiting the details of the calculation, we would like to summarise the main 
features of the model. Inspection of the Hamiltonian given below reveals its close 
resemblance to the ‘spin-boson’ Hamiltonian [7], which has been a topic of considerable 
interest and innumerable publications during the last few years (see e.g. [7] and ref- 
erences therein). There is one difference, however: our Hamiltonian describes not one 
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but many spins (namely the TLS) coupled to the phonon bath. Clearly, the results of 
existing elaborate calculations [8] of the dynamics of the single-spin system cannot simply 
be carried over. This is especially true since the spin-phonon coupling generates an 
interaction between the spins (which is of course impossible in a single-spin system); its 
derivation is one of the goals of this paper. As it turns out, this interaction is the familiar 
elastic coupling (mediated by virtual phonon exchange) between TLS which is known to 
be stronger [9], in most cases, than the electrostatic interaction (mediated by virtual 
photon exchange). All static TLS coupling considered to date are of this indirect type: 
lack of knowledge on the microscopic nature of the TLS means that it is difficult to 
conceive of additional, possibly more direct interaction mechanisms. 

If the phonon coupling is strong, the TLS are expected to become ‘dressed’ with 
‘clouds’ of virtual phonons. Apart from trying to treat the strong coupling correctly, we 
intend to investigate how the bare system parameters become renormalised through 
this coupling. The traditional way to attack both of these problems is via polaronic 
transformations plus perturbation theory. This method, which may be traced back to 
the early 1950’s [ 10-121 (and possibly earlier), has become a standard tool in the polaron 
literature [ 12-14], Although more formal methods like functional integral techniques 
are possible [7,15], this procedure works well enough to give a semi-quantitative answer. 
The emphasis of the present work is not so much on the sophistication of the theoretical 
method as on the physics of the result. 

The calculation proceeds as follows. First, we apply the unitary transformation given 
in equation (8) (later) to the Hamiltonian. This produces an interaction term for the 
‘dressed’ TLS which is obtained without any approximation. Second, we calculate the 
relaxation rate for the dressed TLS using the golden rule, i.e. perturbation theory. The 
underlying assumption (which is also traditionally made) is that the dressed entities can 
be considered as weakly interacting. The final decision as to whether this is true in the 
present case, rests upon experiment. To obtain a clear picture of the physics, it will 
be imperative to reduce the number of parameters in the course of the calculation, 
particularly of those on which little or no experimental information is available. To this 
end, we keep non-oscillatory terms, which are likely to be large, and neglect certain 
oscillatory terms. While this approximation may surely be improved upon in later 
computations, it is clearly the first step to accomplish. 

The Hamiltonian of the system we are considering is 

H = H , + H 2 + H 1 2  (1) 

H I  = - x 4 E k a :  (2) 
k 

H 2  = o,b;b, ( h  = 1) 
4 

H I ,  = ( A ~ u ;  + W : a $ ) ( b ,  + bt,). 

( 3 )  

(4) 
4.k 

The TLS operators are given in pseudo-spin representation with Pauli matrices at, a$ 
(a2 = 1). E k  is the energy splitting of the kth (non-interacting) TLS and is given by 

E k  = [(Ak)2 + (Wk)2]1/2 ( 5 )  
where Ak and W k  are the asymmetry parameter and the tunnelling matrix element, 
respectively (Wis denoted by Aoin the majority of the literature). q is aquantum number 
characterising the phonon mode; it may be viewed B S  shorthand for wavevector plus 
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polarisation, i.e. q = (q, a). It should be noted, however, that for glasses the concept 
of a wavevector q is an approximate one, applicable only to low-energy vibrations. 

H ,  describes the phonon bath, H I ,  the interaction between the TLS and phonons, 
which is assumed here to be linear in the deformation field. To make connection with 
the notation in [ l ]  we note that 

where e,(q, a), ep(q,  0) are components of the phonon polarisation vector and xk is the 
position vector of the TLS considered. A similar formula holds for W :  with Gk,B,Z replaced 

A derivation of (4), which may be found in [16], shows that if the phonons couple (as 
is widely believed) more strongly to the localised TLS states than to their delocalised 
superpositions, the quantities A t  and W t  may be written 

This form is assumed in [2]. (This is equivalent to neglecting the d A o / d E a B  terms in 
equation (4) of [l]. The magnitude of the D t  is largely determined by the phonon 
deformation potentials. 

by Gknp.x. 

A t  = D t A k / E k  W t  = D : W k / E k .  (7)  

We now introduce the unitary transformation 

and rewrite the Hamiltonian (1) in terms of the transformed operators 

x; = U- 'gkU B i  = U-'b iU B ,  = U-'bqU (9) 
describing two-level systems dressed with virtual phonons and phonons dressed with 
(virtual) two-level systems, respectively. 

This is, of course, done by calculating UHU-' and results in? 

where [ , ]+ denotes the anticommutator, 

Obviously, the third term on the right-hand side of (loa) describes a spin-spin interaction 
t For the convenience of readers interested in doing the calculation themselves, we give the transformations 
of operators needed to obtain equation (10): 

U u { U - l =  a! UiarU-' = $ ( & U :  + +:a!) UblU- '  = b i  - (A~ , , /w , )  U ; .  

Here, y f is the same as Y 1, with bare instead of dressed phonon operators. 
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of the dressed TLS, with 

Using (6), we can verify that this operator corresponds to the uta: interaction derived 
in [1], if we employ the same approximations (Debye model, neglect oscillating terms, 
in space, at the Debye wavevector) as in [l]. Of course, this unitary transformation 
cannot reproduce the U $  of: interaction in [l]. However, since this is supposed to be a 
very small fraction of the total TLS-TLS interaction (for reasons given in [ 1,2]), equation 
(10) may be a good starting point for further investigations. We discuss a more general 
unitary transformation below which does lead to a a,k af: interaction. 

So far we have seen how the known form of the interaction between TLS in glasses 
can be derived non-perturbatively. However, equation (10) reveals more than that. 
Whereas in the original form of the Hamiltonian spin-flipping was simply determined 
by the matrix element W t  , we now have two terms (fourth and fifth terms on the right- 
hand side of ( l o a ) ) ,  both inducing spin flips and including complicated phonon operators. 
If the TLS interaction is strong, we are dealing, in physical systems, with the dressed 
entities (2 t, 22) rather than with the bare ones (at ,  at) .  In previous approaches [ 1 , 21, 
calculations were based on the relaxation rates of the latter, even though the spin-spin 
interaction of the former was taken into account. Yet, in general, the flip rates of the 
dressed TLS are different from those of the bare ones. They may be computed from the 
golden rule, which provides the formula 

Here, Hfiip is the sum of the fourth and fifth terms in (loa) and 

BOip (- r )  = exp( - iHn t ) ~ , , ,  exp(iHn Z) (11b) 

Ho being the sum of the first three terms in (loa). We have rewritten the 6 function in 
the golden rule expression as a time integral, since we are dealing with many-phonon 
contributions, which can be handled easier this way. The equilibrium density operator 
Pb of the phonon system appears in the formula, because an average over all initial 
phonon configurations has to be carried out. 

I{n} n= inl)in2) . . . inN> describes the initial TLS configuration as a product of single 
TLS states, the eigenstates of the Z t ,  i{m)) is an analogous product for the final con- 
figuration. We consider a transition with a single TLS flipping, i.e. {m} is a configuration 
which is equal to {n} in all states except the kth one. For this case, the evaluation of (11) 
yields 
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+ L? 24 ::[ Ak_,(nq eiwqT - (n ,  + 1) e-'Oqt) 

with 

k In this formula, n, is the thermal occupation number of phonon mode q. r is the flip 
rate of a TLS from its lower to its upper state (when it absorbs more energy in the many- 
phonon process than it emits), r"j the rate of decay into the lower level. The sum of 
these two quantities is the total relaxation rate rk  of the kth TLS for a given configuration 
of all the other TLS. In order to compare our formula with the familiar [17,2]? 

( l /T l )  (= rbare) = ( y : / c :  +2y;/c:)(W2E/2nh4p) coth(E/2kB T )  (13) 

resulting from the same calculation with HI2  instead of HRIP (and a correspondingly 
different H o ,  of course), we ought to perform an additional thermal average on (12) over 
all TLS except the kth, which we are looking at (the superscript k has been omitted in 
(13)). For an accurate evaluation of (12) we need more detailed information than is 
available for most glasses; therefore, we shall restrict our interest primarily to orders of 
magnitude. We will then introduce several approximations in the process of evaluation 
which turn out to render the thermal average unnecessary. 

First, we neglect the J f i  term in the definition of Etfl,, assuming that the sum of the 
contributions of many TLS with differing signs will add up to something close to zero. 
This is one of the oscillatory terms to be neglected which was mentioned in the intro- 
duction. For the purpose of the calculation it is actually not necessary to replace the sum 
by zero. It is sufficient to substitute an average value which simply adds to the energy Ek 
given in ( 5 ) .  Since this does not change the calculation much, it can be done as easily as 
the one presented here. We chose the value zero, because this choice seems least biased 
in view of the fact that it is hard to give any quantitative estimate without detailed 
information on the spatial distribution of the TLS and the resulting actual strengths of 
the .I::. On average, the sum will be close to zero for temperatures that are not too 
low, i.e. temperatures at which the TLS can be thermally excited. At T = 0, however, all 
TLS will be in their ground state (all n1 = 1) and zero will no longer be a good approxi- 
mation to the sum. 

Second, consider the term 2Zq,[(1 - ~ k I ) ( - l ) n ' f l ( l / W ~ ) W : A [ _ q  in (12a). It has the 
same structure as the second term in (12b) (see the definition of the J t i  after equation 
(10)). The only difference is that A t  is replaced with W:,  meaning a multiplication by 
W:/A:, a small quantity for most TLS. It is therefore consistent to neglect this term as 
well. With these two approximations, equation (12) no longer depends on the particular 
TLS configuration. While these may not be good approximations in all cases, they seem 
justified as a first step in order to get an indication of the overall effects of the strong 
phonon coupling. Anyhow, we do not claim more than qualitative accuracy for our 
results. 
t In the first derivation of this result [17], only one deformation potential was used instead of y, and y r .  
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Our third approximation is to use the Debye density-of-states for the phonons as we 
go to the continuum limit of (12). At low temperatures, this is clearly acceptable for all 
sums containing a factor nq (producing a cutoff at high frequencies where the Debye 
model is not valid), but it is not so obviously a good approximation for the sums 
containing (nq + l ) ,  because of the 1. (Of course, the earlier calculations leading to 
equation (13) also rely on the Debye model.) 

With these assumptions in addition to (7), the total relaxation rate becomes 

d w  w 3 { n ( u )  eior + [n(w) + 11 e-imr} i,,"" 
G A k  * + (5) (j""" dw 0 2 { n ( w )  eiwr - [n(w)  + 11 e-ior} 

where n ( o )  = l/(efim/kBT - 1) 

G A k  
w &  E k  

f(z) = -(-) lomD dw w[2n(w) + 1][1 - cos(wz)] 

G A k  
g(z) = -(-) U &  E k  louD d o  w sin(wz) 

k is a dimensionless constant. 
The relaxation rate Fk of (14) reduces to the simple form of rbare, iff(z) and g(z) as 

well as the last term on the right-hand side of (14a) are set equal to zero. In fact, for 
symmetric TLS ( A k  = O), these quantities aye zero. 

Consider now the asymmetric case. Evaluation of G for a standard set of parameters 
( y ,  = 1.6 eV, Y, = 1.0 eV, cI = 3 km s-l ,  c, = 2 km s-', p = 2 g ~ m - ~ ,  OD = hOD/kB = 
150 K) shows that in general G, and hence f(z), are not small quantities ( G  = 350). 
Therefore, the exponential prefactor e-f(r) will substantially reduce the relaxation rate, 
even for quite small values of the asymmetry parameter (Ak /Ek  b 0.1). This is most 
easily seen by looking at the limit t+ x of (14b): 

is given by the e-iEkr term, rl  by the elEkT term. 

where q = OD/T. 
To confirm this qualitative discussion, we have evaluated (14) numerically. For small 

values of Ek (which we are mainly interested in) the computation turns out to be a tricky 
matter, because the (outer) integrand is a slowly decaying oscillating function at low 
temperatures. Details of the integration procedure will be given elsewhere. 
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Figure 1. Rate r, of flips from the lower level 
of a TLS into the upper level, as a function of 
temperature, in the range to loOD. 
Double logarithmic plot. Parameters used are 
given in the text. Full curve, rate for dressed TLS 
according to equation (14); broken curve, rate 
for bare TLS (equation (13)). The chain curve 
represents e - f W ,  bare. 

Figure 2. Rate r of flips from the upper TLS level 
into the lower one, as a function of temperature. 
Double logarithmic plot. Parameters used are 
givenin thetext. Fullcurve, dressedns (equation 
(14)); broken curve, bare TLS (equation (13)). 
Chain curve e-"")T 

Using the parameter set given above and a ratio Ak/Ek  = 0.1 with E k  = O.01oD, we 
obtain r \  and r 1 as displayed in figures 1 and 2. In addition, we give the absorption 
( m n ( E / f i ) )  and emission parts (K [n(E/fi)  + 11) of formula (13) and the product of these 
quantities with e-f(m). It is obvious that the relaxation rates are indeed reduced by about 
an order of magnitude at low Tin comparison with the naive result (13). Moreover, we 
find that at sufficiently low temperatures the relation rdressed = e-f(m)rba,e is a good 
approximation to the exact result. The deviations of this formula are less than 1% (of 
rdressed) below 0.03 OD and less than 10% below 0.09 0,. In our example, the reduction 
factor is e-f@) = 0.176 below -0.1 OD. It decreases very quickly with increasing Ak:  for 
Ak/Ek = 0.3 we have e-f(OC) = 1.6 x lO-'for A k / E k  = 0.5, e-f(OC) = 1.3 x 

At high temperatures ( T  > OD), our result has little physical significance, since we 
have not considered non-linear couplings in the Hamiltonian, which will then become 
important. Also the Debye model fails in that region. We have extended the calculations 
to these temperatures only in order to show (qualitatively) that the phenomenon of 
dynamic localisation may occur, i.e. the relaxation rate goes through a maximum and 
decreases again. 

Our main result is the strong reduction off l ip rates fo r  strongly coupled TLS. The 
consequences of this result are as manifold as the application of (13). 

We will give examples below. However, it may be useful to recall a few general facts 
first. At present, there seems to exist a set of by-and-large consistent experimental values 
for quantities like deformation potentials, TLS densities-of-states, and TLS relaxation 
times, in several glasses. These quantities are, of course, not measured directly. Direct 
experimental observation concerns different things, e.g. the decrease in signal amplitude 

k 
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due to ultrasound attenuation, the variation of sound velocity as a function of frequency, 
the amplitudes of phonon or photon echoes. 

Consider phonon echoes. They are known to provide a measurement of the deform- 
ation potential y which is independent of the TLS density-of-states [NI .  However, quite 
elaborate theoretical considerations are necessary before one arrives at the seemingly 
direct result for the dephasing rate and then the deformation potential. 

Hence the aforementioned consistent set of experimentally determined parameters 
relies on a-presumably equally consistent-set of underlying theoretical assumptions, 
i.e. not only the specific model, within which the data are interpreted, but also the 
general theoretical framework. 

Our result seems to imply that at least one of the equations widely used within this 
framework does not fit together with another statement made within thesame theoretical 
building, namely that the interaction between TLS and phonon is 'extremely strong' [ 191. 
We have merely calculated the TLS relaxation rate. We expect our argument to apply to 
other quantities such as the phonon relaxation rate as well (which would directly affect 
the interpretation of ultrasound attenuation measurements). In the following discussion, 
however, we can only examine the most immediate consequences of our result. 

For instance, deformation potentials y obtained by way of measurements of TLS 
relaxation rates [18] may have to be corrected (if one is interested in the bare quantities) 
towards larger values to compensate for the decrease by a factor e-f(=), unless the 
experimental results were dominated by relaxation of symmetric or near symmetric TLS. 
This may have been the case, but then it is difficult to explain the observation of additional 
faster relaxation processes in terms of spectral diffusion [18] .  Inspection of ( l o a )  and (7) 
shows that, in the present approximation, the spin-spin interacti,on of symmetric TLS is 
zero, hence these are not affected by spectral diffusion. (We will slightly modify this 
statement below .) 

Of course, experimentalists have knownfor along period of time that the deformation 
potentials obtained from measurements were effectiue, i.e. averaged values, and most 
certainly it was also suspected that these quantities were renormalised through the 
interaction-even though we are not aware of any explicit statement about this in the 
TLS literature. On the other hand, merely switching to a description in terms of effective 
quantities whilst sticking to the old formulae may not be sufficient, because the renor- 
malisation changes functional dependencies as well, as we have seen. In our case, this 
change may hardly be visible in the temperature direction of parameter space, because 
it is well described by a simple prefactor over the experimentally relevant range of 
temperatures, but it is quite pronounced in the A-direction. 

To check on the possible effects of this strong A-dependence, we consider, in some 
detail, the distribution of TLS relaxation rates. We will assume that the distribution of A 
and A is constant in accord with the original ideas in [3]  and [4]: P ( A ,  A )  = P .  We then 
transform this distribution to new variables r = T;'/T;;," and E ,  given byequation ( 5 ) .  
In the usual framework, r = (W/E)2 and P(E ,  r )  = P/2r ( l  - r)''2, which we call the 
weak-coupling result. Within the present theory, however, we have for temperatures 
below O.03OD 

with (see ( 1 5 ) )  
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Figure 3. Logarithmic plot of the TLS distri- 
bution P(E, I ) .  Full curve, strong coupling 
result (equation (18)), G' = 10; broken 
curve, usual weak-coupling result (cor- 
responding to p = 0 in [20]); chain curve, 
the formula of [20] with their suggested 
value p = 4; dotted curve, approximation 
(20). F is set equal to 1 for convenience. 
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G' = G(1+ - + -In (1 - e-q)  - 7 

3 v 2  V V n = l  n 

which is only weakly temperature-dependent in the temperature range considered. This 
leads to 

P ( E ,  r )  = P/2ru(r){l + G'[1 - ~ ( r ) * ] }  

r(u)  = (1 - U') 

(18) 

(19) 

where u(r) = A / E  is the inverse function of 

This distribution is plotted in figure 3 ,  together with the weak-coupling result and a 
modified distribution used in [20], namely P(E,  r )  = 1"/2r(l - r)'''-P, with ,u = 8. The 
dotted line gives an analytical approximation to (18), valid for small values of U 

P ( E ,  r )  = P/2r(l + G')1/'(ln(l/r))1'2. (20) 

We have chosen the rather small value of G'  (= 10) in order to keep this approximation 
(which improves with increasing G ' )  distinguishable from the solid curve representing 
the exact formula (18). The general shapes of the strong-coupling and the weak-coupling 
curves are, for the r values considered, very similar to each other, much more so than 
to the modified distribution. However, for the same value of P ,  the strong-coupling 
distribution is reduced by approximately afactor (1 + G')'/* (close to r = 1) with respect 
to the weak-coupling one. From the figure, it cannot be seen that the total number of 
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TLS is the same in both cases, because the curves are drawn for a common r range. 
However, for given cutoffs in A and A of the distribution P(A, A ) ,  the strong-coupling 
result extends down to much lower rates r.  

Of course, equation (18) may be used to calculate the time dependence of the specific 
heat. If we set rmin = Tlmin/t, where t is the experimental time of observation, and 
integrate (18) from rmin to 1, we obtain the (exact) time dependent density-of-states: 

This yields the following short-time and long-time results for the specific heat: 

C(T,  t )  = (n2/6p)ki Tp{[1/(1 + G’)] ln(t/Tl,,,ln)}l’z 

C(T ,  t )  = (n2/12p)k6 TP[ln(4t/Tlmin) - G’] 

( t  3 TI min 1 (22) 

(23) ( t  s=- e‘’ Tlmin). 

Given the constancy of the TLS distribution in the variables A and A ,  the first equation 
constitutes a new prediction for the short-time behaviour of the specific heat. The second 
result is, apart from the summand -G‘, identical to the familiar logarithmic time 
dependence from weak-coupling theory. Note, however, that in the present theory this 
result holds only in the extreme long-time limit. 

On the other hand, for experiments taking place on short time scales the effective 
distribution of the TLS asymmetry parameter A may be much narrower than theoretically 
anticipated [3,4] due to the slowing down of asymmetric TLS. This could yield an 
explanation, along the lines suggested in [18] for the discrepancy between TLS densities- 
of-states inferred from ultrasound experiments and specific heat measurements. Since 
the time scale of the former is much shorter, they may just not probe many slow 
asymmetric TLS. 

Noting that our result differs from the frequently used formula (13) by just a factor 
(which is, however, A-dependent) over a wide temperature range, we conclude that 
previous results depending only on the functional form of T k  may merely be affected 
within prefactors. This explains to some extent the success of these theories despite 
their failure to account properly for the strong TLs-phonon interaction. Whether the 
parameters needed in modified prefactors are still physically reasonable has to be 
reviewed in each case. Even if it turns out that current theories need not be altered much 
if all bare parameters are replaced with dressed ones, the present work opens up the 
possibility actually to calculate the bare quantities. This may have important con- 
sequences regarding our microscopic picture of the TLS. Furthermore, we may speculate 
that certain puzzling scaling relations like the constancy of the product py2/pc2 for a 
wide variety of glasses [21] will find an explanation in terms of the proper relations 
between bare and dressed quantities. 

Let us discuss two final theoretical examples. In [2], an expression was derived for 
the decay time of phonon echoes in the presence of spectral diffusion, which was later 
employed in the explanation of homogeneous optical linewidths in glasses [22,23]. This 
formula contains the TLS relaxation rate l /Tl ,  which, however, has no influence on the 
temperature dependence of the infinite-time result for the linewidth. Yet, a general 
reduction of relaxation rates for asymmetric TLS should, in principle, make the inter- 
mediate-time result in [23] applicable to a wider range of experimental situations. Again, 
there may be a quantitative problem, because the fastest relaxing TLS (the symmetric 
ones) which were supposed to contribute most, contribute least to spectral diffusion. 

Theories of homogeneous optical linewidths not invoking spectral diffusion ([24] and 
references therein) should be affected, too. In these theories, the relative contribution of 
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symmetric TLS to the linewidth will become more important. Because the symmetric TLS 
generally have much smaller energy splittings than the asymmetric ones, most of them 
can be described in the high-temperature approximation even at fairly low temperatures. 
Therefore, we expect the theoretical temperature dependence to be modified somewhat 
towards linearity ( T1) .  It remains to be examined if this effect is strong enough to change 
the temperature exponents presently obtained to values which no longer agree with 
experiment, thus indicating the necessity of major modifications of the theory. On the 
other hand, since at low temperatures the TLS with large energy splittings contribute 
little to the linewidth anyway, it is also possible that the alterations are not remarkable. 

Finally, we would like to point out that this is only the beginning of the story. Had 
we taken the strong phonon coupling even more seriously, we would have introduced, 
instead of (8), a unitary transformation with the exponent 

-2 ( l / ~ , ) ( A ; u ;  + W ; u ; ) ( b ,  - b?,) 
q . k  

which is diagonal in the localised TLS states, to get rid of the entire linear coupling HI2 .  
This changes the spin-spin interaction term into 

Hence the symmetric TLS are no longer special in not having reduced relaxation rates 
and zero interaction, but for them the interaction does not contain any pure 2: terms 
(however, Z22: and 2c,"2f terms are present). The main features obtained with this 
transformation are similar to the results presented above. However, the energy splitting 
of the TLS changes somewhat, because H I  is non-diagonal in the localised basis. It is 
not clear a priori which of the two transformations produces a better zeroth-order 
Hamiltonian. 

We need not stop at linear TLs-phonon interactions and the corresponding unitary 
transformations. If the ideas in [23]  about the importance of the Raman process are 
correct, it is almost mandatory to include quadratic phonon coupling (even though we 
have already taken some many-phonon processes into account). This can also be treated 
in the framework of unitary transformations, as shown in [25].  The calculations are much 
more complicated but may lead to drastic new effects including a change of the phonon 
dispersion law. 

As to the present state of the art, there are many publications claiming success in 
explaining thermal, acoustic, and optical properties of glasses on the basis of the TLS 
model. However, they do not take strong coupling effects into account, even though the 
strong TLs-phonon interaction is sometimes emphasised [ 191, It would therefore seem 
from the above considerations that the dynamics of TLS in glasses are still not well 
understood. At the very least, it has to be explained (i) why weak-coupling theories have 
been so successful, (ii) which parameters must be changed in which direction in order to 
account for strong coupling, and (iii) why this is uncritical. In the worst case, the 
erroneous or unrealistic assumptions in these theories must be found, and it is interesting 
whether this will lead to new physical insights. 
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